

Communication

Hydrogen Peroxide: A Poor Ligand to Gallium Tetraphenylporphyrin

Antonio G. DiPasquale, and James M. Mayer J. Am. Chem. Soc., **2008**, 130 (6), 1812-1813 • DOI: 10.1021/ja077598w Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

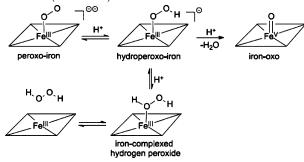
Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 01/17/2008

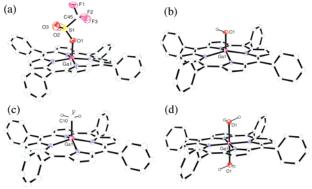
Hydrogen Peroxide: A Poor Ligand to Gallium Tetraphenylporphyrin


Antonio G. DiPasquale[†] and James M. Mayer^{*}

Department of Chemistry, Campus Box 351700, University of Washington, Seattle, Washington 98195-1700 Received October 2, 2007; E-mail: mayer@chem.washington.edu

Hydrogen peroxide is a thermodynamically potent oxidant that is an important "reactive oxygen species" in biology and is being increasingly used as an industrial reagent.¹ H₂O₂ is typically kinetically activated by a metal catalyst. For instance, it forms active oxidants when reacted with heme enzymes or iron porphyrin complexes [(por)Fe].² The possible involvement of a [(por)Fe^{III}-(H₂O₂)] complex in catalysis by cytochrome P450 enzymes has been debated and such a complex could be involved in H_2O_2 loss from the enzyme (Scheme 1^{3a}).^{2–4} A recent thermochemical analysis suggests that H₂O₂ could be strongly bound to the Fe^{III}-heme in P450.5 Despite this interest, much is uncertain about the interaction of H₂O₂ with metal ions. To our knowledge there are no observations of metal-H₂O₂ complexes (although they have been implicated in kinetic studies⁶). We report here efforts to generate a gallium-porphyrin peroxide complex which suggest that H₂O₂ is a very poor ligand. A simple procedure to prepare dilute solutions of anhydrous H₂O₂ in CD₂Cl₂ is also described.

When an H₂O₂ complex acts directly as an oxidant, for example, in the suggested $[Fe^{III}(H_2O_2)]^+ + RH \rightarrow [Fe^{III}(OH)] + ROH_2^{+,3}$ redox change at the metal is not involved. Therefore it is attractive to model this process with redox-inactive Ga³⁺, which has been used as an analogue of Fe³⁺, particularly similarly sized high-spin Fe³⁺.⁷ (Por)Fe^{III}(OOH) species are most often low spin,⁸ although a five-coordinate high spin form has been described.^{8c} [(Por)Fe^{III-}(H₂O₂)] species have not been observed but one form is calculated to have closely lying doublet and quartet states.^{4b} (OEP)Ga(SR) has been used as models for P450^{7a,b} and Balch et al. have reported tetraphenylporphyrin gallium peroxide complexes (TPP)GaOOR.⁹


Scheme 1. Suggested Intermediates in Cytochrome P450 Oxidations (from ref 3a)

As a possible route to an H_2O_2 adduct, (TPP)Ga^{III} complexes with weakly coordinating anions have been prepared. (TPP)GaCl reacts with 1 equiv of AgOTf (OTf = CF₃SO₃⁻) or AgClO₄ in CH₂Cl₂ to give (TPP)GaOTf (1) or (TPP)GaClO₄ (2, eq 1; X =

$$(TPP)GaCl + AgX \rightarrow (TPP)GaX + AgCl \qquad (1)$$

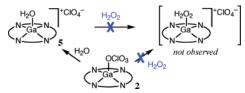
OTf (1), ClO₄ (2)). Reactions with AgPF₆ and AgBF₄ gave multiple products, and the anions BPh_4^- and $B[3,5-C_6H_3(CF_3)_2]_4^-$ are not stable to H₂O₂. The hydroxide complex (TPP)GaOH (3) precipitates

Figure 1. ORTEP drawings of the Ga complexes in (a) (TPP)GaOTf- C_7H_8 (1), (b) (TPP)GaOH (3), (c) (TPP)GaCH₃ (4), and (d) [(TPP)Ga-(OH₂)₂]ClO₄.

upon the addition of water to THF solutions of $(TPP)Ga(OO'Bu)^9$ or (TPP)Ga(O'Bu) or when using "wet" solvent (eq 2). The related $(TPP)GaOH \cdot H_2O$ has been reported.¹⁰ Treatment of (TPP)GaCl with CH₃Li in Et₂O gives the methyl derivative (TPP)GaMe (4, eq 3).

$$(TPP)Ga(O_{v}^{t}Bu) + H_{2}O \rightarrow$$

$$(\text{TPP})\text{GaOH} (\mathbf{3}) + {}^{t}\text{BuO}_{x}\text{H} (x = 1,2) (2)$$
$$(\text{TPP})\text{GaCl} + \text{CH}_{3}\text{Li} \rightarrow (\text{TPP})\text{GaCH}_{3} (\mathbf{4}) + \text{LiCl} (3)$$


Compounds 1–4 have been characterized by ¹H and ¹³C{¹H} NMR spectroscopy and elemental analyses.¹¹ X-ray crystal structures for 1, 3, and 4 show five-coordinate complexes with Ga displaced as much as 0.530(3) Å from the porphyrin plane for 4 (Figure 1).¹¹ The structures of 3 and 4 contain a crystallographic mirror plane co-incident with the porphyrin, with the Ga and axial ligand disordered above and below the plane. Crystals of 2 have not been obtained but the related iron derivative, (TPP)Fe(κ^1 -ClO₄), has been structurally characterized.¹² Small amounts of water convert (TPP)Ga(ClO₄) in CD₂Cl₂ to the mono-aquo complex [(TPP)Ga(OH₂)]ClO₄ (5) (eq 4), characterized by ¹H NMR especially integration of the coordinated H₂O signal at δ –14.2. Excess water precipitates the insoluble bis(aquo) complex, whose X-ray structure is shown in Figure 1d.

$(\text{TPP})\text{Ga}(\text{ClO}_4) + \text{H}_2\text{O} \rightarrow [(\text{TPP})\text{Ga}(\text{OH}_2)]\text{ClO}_4(\mathbf{5}) \quad (4)$

One challenge of preparing hydrogen peroxide complexes is that H_2O_2 is commercially available only as an aqueous solution. Pure H_2O_2 has been described but is extremely hazardous.^{1b} We have focused on preparing dilute solutions of H_2O_2 in an aprotic, anhydrous, and oxidation resistant organic solvent. Literature routes to such solutions have been problematic in our hands but key to our success were the reports that $Mg(ClO_4)_2$ is a selective sorbent for H_2O that does not decompose H_2O_2 .¹³ CD₂Cl₂ gave the best results of the solvents examined.¹¹ A fresh bottle of CD₂Cl₂ (25 g) was treated with ~5 g Mg(ClO_4)₂ (anhydrous desiccant grade from Fisher Scientific) and cooled at -4 °C for 30 min. Approximately 3 mL of 50% H_2O_2 was added dropwise over a 10 min period,

[†] Current address: Department of Chemistry and Biochemistry, University of California-San Diego, California. E-mail: adipasqu@chem.ucsd.edu.

Scheme 2. Experiments Indicating the Lack of Binding of H₂O₂ to (TPP)Ga^{III} Complexes in CD₂Cl₂

maintaining -4 °C, and the mixture was stored overnight. Only glassware cleaned with Caro's acid (H₂O₂/H₂SO₄) was used. Aliquots of such solutions removed with a glass pipet have ¹H NMR spectra that show only a single resonance at δ 7.55 (other than the residual CHDCl₂ peak) and thus have $[H_2O] < 3\% [H_2O_2]$. The addition of small amounts of H2O results in the appearance of a second resonance, at δ 1.57 for H₂O, without affecting the H₂O₂ resonance (Figure S1). The addition of Ph₃P to the H₂O₂/CD₂Cl₂ solutions results in rapid and quantitative formation of Ph₃PO and H₂O. While *caution* must be exercised in any procedure using either perchlorate salts or 50% H₂O₂, we have experienced no difficulties with these solutions, which are stable for months at -4 °C. Solutions of 1-100 mM H₂O₂ have been prepared (measured by ¹H NMR using an internal standard); typical procedures have used ~ 10 mM solutions.

Surprisingly, the gallium triflate complex 1 does not react with H₂O₂/CD₂Cl₂ as determined by ¹H NMR. The resonances for 1 and H₂O₂ remain unperturbed and no new peaks appear. Adding PPh₃ to solutions of 1 and H₂O₂ causes rapid quantitative formation of OPPh₃ and H₂O (¹H NMR), showing that H_2O_2 is still present. Similarly, successive additions of H2O2/CD2Cl2 to purified samples of the perchlorate complex 2 causes no change in the ¹H NMR chemical shifts. (Multiply recrystallized 2 is required because trace AgClO₄ appears to disproportionate H₂O₂.) Some broadening and then sharpening of the resonances for 2 are observed with increasing H₂O₂ (Figure S2), perhaps because of changes in solvation. The addition of PPh₃ to solutions of $2 + H_2O_2$ quantitatively yield OPPh₃ and the H₂O generated in this reaction forms 5. In sum, H₂O₂ does not bind significantly to the gallium triflate or perchlorate complexes.

The aquo complex 5 was generated in situ by dissolving 2 in CD₂Cl₂ saturated with H₂O, yielding a mixture of 2 and 5 (by ¹H NMR), together with some precipitated bis(aquo) complex. The addition of H₂O₂/CD₂Cl₂, such that there was roughly twice as much H₂O₂ as H₂O, caused only very minor changes in the ¹H NMR spectra. The H₂O resonance of 5 shifted downfield very slightly (<0.02 ppm) and the concentration of **5** actually increased slightly (Figure S3), possibly as a result of the greater solubility of the bis-(aquo) complex in the presence of H₂O₂. Thus, as summarized in Scheme 2, H_2O_2 does not displace the water ligand in 5.

(TPP)Ga(OO^tBu), (TPP)GaOH (**3**), and (TPP)GaCH₃ (**4**) are also inert to H2O2/CD2Cl2 at 25 °C. Complex 4 does react with HOTf to form 1 but is unreactive with H₂O. Solutions containing (TPP)-GaClO₄ and H₂O₂ in CD₂Cl₂ did not show any reactivity with cyclohexene, norbornene, or trans-stilbene by NMR or GC-MS.11 If a small amount of an H₂O₂ complex is present under these conditions, it is not highly reactive.

In sum, H₂O₂ is a very poor ligand to (TPP)Ga^{III}. An excess of H_2O_2 in CD_2Cl_2 does not displace H_2O or ClO_4^- from the gallium center. While tetraphenylporphyrin-gallium salts in CD₂Cl₂ are distant models for the heme-iron(III) center in P450, these results do not lend support to the suggestions of a hydrogen peroxide complex as an important oxidant. To our knowledge there are no reports of observable M(H2O2) or M(ROOH) complexes. Gas-phase calculations indicate that η^2 -binding of H₂O₂ to Li⁺ and Na⁺ is about 5 kcal mol⁻¹ weaker than binding of H₂O,¹⁴ which is consistent with our calculations on (TPP)Ga⁺.¹⁵ The gas-phase proton affinity of H_2O_2 is 4 kcal mol⁻¹ less than that of H_2O (161 vs 165 kcal mol⁻¹).¹⁶ Very weak binding of H₂O₂ to Co^{III} has previously been suggested on the basis of kinetic studies.⁶ That H_2O_2 is poorer ligand than H_2O may be understood by considering that changing from H₂O to H₂O₂ involves replacing H by the more electron-withdrawing OH. Weak binding of H₂O₂ is likely a general feature of its chemistry, in the absence of a base to form hydroperoxo or peroxo complexes.

Acknowledgment. We are grateful to the U.S. National Institutes of Health for support (Grant R01 GM50422). We thank Dr. W. Kaminsky, Dr. M. Sadilek, and Prof. X. Li for assistance with X-ray crystallography, GC-MS, and computations, respectively.

Supporting Information Available: Full experimental details and CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Active Oxygen in Chemistry; Foote, C. S.; Valentine, J. S.; Greenberg, A.; Liebman, J. F.; Eds.; Blackie: London, 1995. (b) Jones, C. W. Applications of Hydrogen Peroxide and Derivatives; Royal Society: Cambridge, U.K., 1999. (c) Lancaster, M. Green Chemistry: Royal Society: Cambridge, U.K., 2002. (d) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidation of Organic Compounds; Academic Press: New York, 1981.
- (a) Cytochrome P450: Structure, Mechanism, and Biochemistry; Ortiz (a) Cylochronia 1450. Sindchare, indechanish, and Diotentishy, Ottal de Montellano, P. R.; Ed.; Kluwer/Plenum: New York, 2005. (b) Groves, J. T. J. Inorg. Biochem. 2006, 100, 434–447. (c) Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I. Chem. Rev. 2005, 105, 2253–2278.
 (d) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Chem. Rev. 2005, 105, 2279-2328
- (a) Chandrasena, R. E. P.; Vatsis, K. P.; Coon, M. J.; Hollenberg, P. F.; Newcomb, M. J. Am. Chem. Soc. 2004, 126, 115–126. (b) Newcomb, M.; Toy, P. H. Acc. Chem. Res. 2000, 33, 449–455. (c) Coon, M. J. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 1–25.
- (4) Leading refs: (a) Reference 2. (b) Derat, E.; Kumar, D.; Hirao, H.; Shaik, S. J. Am. Chem. Soc. 2006, 128, 473–484. (c) Newcomb, M.; Chandra-sena, R. E. P.; Lansakara-P., D. S. P.; Kim, H.-Y.; Lippard, S. J.; Beauvais, L. G.; Murray, L. J.; Izzo, V.; Hollenberg, P. F.; Coon, M. J. J. Org. Chem. 2007, 72, 1121–1127. (d) Davydov, R. M.; Perera, R.; Jin, S.; Yang, T.-C.; Bryson, T.A.; Sono, M.; Dawson, J. H.; Hoffman, B. M. J. Am. Chem. Soc. 2005, 127, 1403–1413.
- (5) Koppenol, W. H. J. Am. Chem. Soc. 2007, 129, 9686-9690. The author estimates ΔG (pH 7) $\gtrsim -47$ kJ mol⁻¹ for formation of P450Fe^{III}OOH (eq 8) and 0–9 kJ mol⁻¹ for its protonation, suggesting stability for the
- H₂O₂ complex. (6) (a) Mirza, S. A.; Bocquet, B.; Robyr, C.; Thomi, S.; Williams, A. F. *Inorg.* Chem. 1996, 35, 1332-1337. (b) Wolak, M.; van Eldik, R. Chem. Eur. J. 2007, 13, 4873-4883.
- (7) $OEPH_2 = octaethylporphyrin.$ For example: (a) Ueno, T.; Nishikawa, N.; Moriyama, S.; Adachi, S.; Lee, K.; Okamura, T.; Ueyama, N.; Nakamura, A. *Inorg. Chem.* **1999**, *38*, 1199–1210. (b) Okamura, T.; Mishikawa, N.; Ueyama, N.; Nakamura, A. Chem. Lett. 1998, 199–200.
 (c) Vo, E.; Wang, H. C.; Germanas, J. P. J. Am. Chem. Soc. 1997, 119, 1934-1940. (d) Kersting, B.; Telford, J. R.; Meyer, M.; Raymond, K. N. J. Am. Chem. Soc. 1996, 118, 5712-5721. (e) Kazanis, S.; Pochapsky, T. C.; Barnhart, T. M.; Penner-Hahn, J. E.; Mizra, U. A.; Chait, B. T. J. Am. Chem. Soc. 1995, 117, 6625–6626. (f) Maelia, L. E.; Koch, S. A. Inorg. Chem. 1986, 25, 1896–1904.
- (8)(a) Rivera, M.; Caignan, G. A.; Astashkin, A. V.; Raitsimring, A. M.; Shokhireva, T. Kh.; Walker, F. A. J. Am. Chem. Soc. 2002, 124, 6077-6089 and refs. therein. (b) Davydov, R.; Satterlee, J. D.; Fujii, H.; Sauer-Masarwa, A.; Busch, D. H.; Hoffman, B. H. J. Am. Chem. Soc. 2003, 125, 16340–16346. (c) Arasasingham, R. D.; Cornman, C. R.; Balch, A. L. J. Am. Chem. Soc. 1989, 111, 7800–7805. (d) Tajima, K.; Shigematsu, L. J. Mar. Chem. Soc. 1997, 111, 1600 (1607) (d) Lafina, K., Singermans, M.; Jinno, J.; Ishizu, K.; Ohya-Nishiguchi, H. J. Chem. Soc., Chem. Commun. 1990, 144–145. (e) Tajima, K.; Oka, S.; Edo, T.; Miyake, S.; Mano, H.; Mukai, K.; Sakurai, H.; Ishizu, K. J. Chem. Soc., Chem. Comm. 1995, 1507-1508
- (9) Balch, A. L.; Hart, R. L.; Parkin, S. Inorg. Chim. Acta 1993, 205, 137–143.
 (10) Kadish, K. M.; Cornillon, J. L.; Coutsolelos, A.; Guilard, R. Inorg. Chem. 1987, 26, 4167-4173.
- (11) Full experimental details are given in the Supporting Information.
 (12) Kastner, M. E.; Scheidt, M. E.; Mashiko, T.; Reed, C. A. J. Am. Chem. Soc. 1978, 100, 666-667.
- (a) Han, H. Shiyou Huagong **1994**, 23, 298–300. (b) Titova, K. V.; Kol-makova, E. I.; Rosolovskii, V. A. Zh. Neorg. Khim. **1987**, 32, 2849–2850.
 (14) (a) Daza, M. C.; Dobado, J. A.; Molina, J. M.; Salvador, P.; Duran, M.;
- Villaveces, J. L. J. Chem. Phys. 1999, 110, 11806-11813. (b) Stefanovich, E. V.; Truong, T. N. J. Chem. Phys. 1996, 104, 2946-2955.
- (15) DiPasquale, A. G. Peroxide Complexes of Non-redox Active Metal Centers: Models for Alternative Mechanisms in Cytochrome P450 Oxidations? Ph.D. Thesis. University of Washington, Seattle, WA, 2006, pp 59ff.
- (16)NIST Chemistry Webbook. http://webbook.nist.gov/chemistry/pa-ser.html (accessed Dec. 16, 2007).

JA077598W